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It’s 2025:  Has Unlearning Already Won?

 Empirical evaluations indicate the subtle and incremental improvements in recent 
unlearning works.

Image generated by the author (Nima Naderloui) with DALL·E 4o (OpenAI)
Prompt: “Single-panel office cartoon, simple pastel colors, …<context>... style is similar to classic comics in newspapers. The font is Comic Sans”

 A large and growing body of work has been introduced for inexact selective 
unlearning.

a) Unlearning request

 Did we solve unlearning?! or need to revisit empirical evaluation?!
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It’s 2025:  Has Unlearning Already Won?

Failure of membership inference aack (MIA) -> Beer 
Forgeing [1]

Existing MIAs suggest that unlearning approximates Retraining 
(Gold standard)

[1] Jagielski, Matthew, et al. "Measuring forgetting of memorized training examples." In ICLR 2023.
[2] Fan, Chongyu, et al. "Challenging forgets: Unveiling the worst-case forget sets in machine unlearning." In ECCV 2024. 
[3] Hayes, Jamie, et al. "Inexact unlearning needs more careful evaluations to avoid a false sense of privacy." In SaTML 2025. 

b) Using a fast inexact unlearning

One-way MIA acc: 
low MIA accuracy 
gap <3%  with 
“retraining” on top 
unlearning [2].

SOTA on privacy leakage: 
MIA accuracy gap <10% 
on top unlearning [3].
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Warm-up: Our Motivation
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1: Users share data to 
train a model

2: GDPR allows some 
users (e.g., <1%) to 
request their data 
removed from the 
model 
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3:  We have an unlearning 
algorithm; we need to remove the 
requested data to ensure GDPR 
compliance

Recalling: Memorization is not uniform! 
Some samples are more vulnerable than 
others.

Jamie (High risk)EmmyAlex (Low risk)
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Threat Model and Definitions
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Train Unlearn

Unlearn Held-out

If Unlearn ≈ Held-out, privacy is preserved. 
" Privacy"

If Unlearn ≈Out, unlearning is eective. 
"Eicacy" (Indistinguishability to Retraining)
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In: distribution of trained models where a 
sample is member

Out: distribution of trained models where 
sample is non-member

Unlearn: distribution of unlearned models 
where a sample is unlearned

Held-out:  distribution of unlearned 
models where sample is non-member

Jamie (High risk)EmmyAlex (Low risk)

Threat Model:  adversary only has 
access to the final unlearned model
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What is missing today
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Out
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Average-case MIAs (or model accuracy)
underestimate per-sample’s unlearning 

requirements. 

Unlearning suppresses 
model output! (makes 
MIA-resilience, but not a 
removal guarantee)

Avg 
Out

3. Many samples are like this; well- protected already.
“ Let’s do not evaluate them”

2. MIA resilience diers from unlearning 
guarantee! Need to find a way to measure 
eicacy

Eicacy:  “ MIA to identify if any 
sample is unlearned or retrained”

1.  “ Be er to 
be per- 

sample l ike 
[3]”

[3] Hayes, Jamie, et al. "Inexact unlearning needs more careful evaluations to avoid a false sense of privacy." In SaTML 2025.

Alex Emmy Jamie
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Rectified Unlearning Evaluation Framework via Likelihood Inference (RULI)

1. We introduced an algorithm to train shadow models; got all distributions required per-
sample

We optimized our algorithm’s parallelization to reduce shadow-model costs.

2. We introduced a hypothetic Test model  to measure Eicacy; 
This calibrates output suppression impact.

3. We targeted vulnerable sample and inject them as canaries to challenge/evaluate 
unlearning. 
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Our Results

 We assume we can always find the 
best unlearning parameters per 
unlearning request. 

 Canary injection usually leaks more 
than purely unlearning vulnerable 
samples!

 We also tried similar experiments 
on CIFAR-10, CIFAR-100, and 7-gram 
unlearning from WikiText-103.

Tiny ImageNet unlearning; swin-small model; 
unlearning <1% of the data.
500 samples: 250 Out and 250 Unlearned

~12.6% higher 
MIA success
6.3x higher 
privacy risk 
than 
retraining

~19.5% higher 
MIA success; 
10.9x privacy 
risk than 
retraining

Up to 69% MIA success 
distinguishing 
unlearned vs retrained 

This is one example; further results are in the paper. 
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Thanks for your a ention!

More details about our design and validations?

Let’s discuss this more in the following poster session
Or contact us via email: nima.naderloui@uconn.edu

Last words …

https://github.com/datasec-lab/RuliCode available on: 
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