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Our paper

Introduction RULI: Workflow and Algorithm

v Aunified per-sample MIA to measure privacy leakage with efficacy with no

4 Inexact Unlearning for efficient data removal, privacy additional shadow costs

protection and safety.

4 Inexact unlearning requires empirical evaluation

4 Unlearning should protect all samples and be close to
(Retraining) gold removal standard [1]

v With N training and unlearning, we will get N/3 instance per distribution
(while keeping unlearning rate low).

v Valid in Game theoretical backbone
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Pll. Evaluating Random Samples Underestimates
Unlearning Privacy

0 Many samples are well-protected even with no unlearning Crame: Jargeted M 0PI CaTIng T VACY B ATiGS VIR s O TN EARTIE a0
D We are not |nterested in Wel | _protected samples 1. The challenger trains a model with Dy, C D and gets 6. 1. The challenger trains a model with Dy, C D and gets 0;.
2. The adversary chooses a target set Dy,0¢r and sends to challenger. 2. The adversary chooses a target set Droer and sends to challenger.
) ] ] 3. The challenger unlearns D ;U { Dy ”"f[)m.gm } to get the model O¢;. 3. The challenger unlearns D ; U { Diain (M Diaroer | to get the model 8¢;.
Plll. Incomplete Comparisons with the Retrain 4. The challenger flips a coin c: 4. The challenger flips a coin c:

e If ¢ = head, the challenger chooses a data point z from D ¢ N Dyaroets

e If ¢ = head, the challenger chooses a data point z from D M Dyarget
and the query result will be given as fog (-

Baseline (Efficacy)
d We need to distinguish whether a sample is uniearned or
retrainead.

e If ¢ = tail, the challenger chooses a data point z from

i e If ¢ =tail, the challenger chooses a data point z from Dyyreet \ Dirains
Dmrgct \Dtrain \

and the query result will be given as fy, (-

5. The challenger sends the selected data point z to the adversary. 5. The challenger sends the selected data pomt - to the adversary
: : P 6. Given the unlearned model 8¢;, the adversary queries z to determine 6. Given the query from queries z as fp(-), the adversary determines if
D Cha”enge IS Unlearn|ng Suppresses OUtPUtS and thIS IS if it is in Dy,in and guess ¢ = {head, tail}; adversary wins if ¢ = c. 7 is in /) and guess ¢ = { heac | ta 11 \: a </\ rsary wins if ¢ = c.

not necessarily unlearning [2] - > MIA resilience
=Unlearning
d We need a MIA to calibrate output suppression

Revisited Game for Pl Revisited Game for Pl

Quick Look
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RULI achieves SOTA on privacy leakage and is the first to separate
efficacy and privacy for Machine Unlearning
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Experiments

Baselines & Settings

4 Targeting SOTA inexact unlearning'’s

4 Choosing best unlearning parameters for any experiment
4 Targeted population MIA baseline to show impact of Pl

Training data Non-training data
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(1) Train with (2) Unlearn  (3) If sample is ‘ samples as canaries
Training data forgetdata  unlearned?

works), Protected samples, Vulnerable samples only, Vulnerable + protected
(Best) , Random from one class [1]

a) Image classification. Unlearnimages from trained/finetuned model.
CIFAR-10&100/Tiny ImageNet

Targeted average-case attack

(Population attack) ROEL
Target data TPR@ TPR@ TPR@ TPR@
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6.3% 16.6 %
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69.5% 63.6% 109% 27.1%

unlearning <1% of data from fine-tuned Swin-small model M

WIth Tiny ImageNet (left; privacy leakage, right; efficacy) 10_17:,~*
-()- Per-sample attacks work better (PI) 5
6 Our canary injection settings shows 10-2
=" higher leakage (PII) ~ Vineratle (e < 072, A0 20800
(- Better MIA resilience does not 1072 e -
"= guarantee Efficacy (PIlI) R
(b) Scrub

‘5 % canaries: RULI still finds leaks—TPR@1 % = 8.7 %, Acc = 68.5 % (CIFAR-10).
Mitigation: Sequentially unlearn samples with similar memorization.

b) Language models. Unlearn last 7-gram_sequence from WikiText-103

Example: ...The Meridian Historic Districts and Landmarks Commission was created in
1979, and the Meridian Main Street program was founded in 1985.
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» Limitation: not feasible to apply RULI to foundation models or model with large knowledge
domain
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