

Rectifying Unlearning Efficacy and Privacy Evaluation: A New Inference Attack Perspective

Nima Naderloui¹, Shenao Yan¹, Binghui Wang², Jie Fu³, Wendy Hui Wang³, Weiran Liu⁴, Yuan Hong¹

Our paper

https://github.com/datasec-lab/Ruli

Introduction

- ☐ Inexact Unlearning for efficient data removal, privacy protection and safety.
- ☐ Inexact unlearning requires empirical evaluation
- ☐ Unlearning should **protect all samples** and **be close** to (Retraining) gold removal standard [1]

Threat model

What Was Missing

PI. Average-case MIAs Cannot Fully Disclose Unlearning Privacy

- ☐ An MIA on population would hide the per sample unlearning requirement
- ☐ We use per-sample MIAs like [1]

PII. Evaluating Random Samples Underestimates Unlearning Privacy

- ☐ Many samples are well-protected even with no unlearning
- We are not interested in well-protected samples

PIII. Incomplete Comparisons with the Retrain Baseline (Efficacy)

- ☐ We need to distinguish whether a sample is *unlearned or* Retrained.
- ☐ Challenge is unlearning suppresses outputs and this is not necessarily unlearning [2] -> MIA resilience ≠unlearning
- ☐ We need a MIA to calibrate output suppression

RULI: Workflow and Algorithm

- ✓ A unified per-sample MIA to measure privacy leakage with efficacy with no additional shadow costs
- ✓ With N training and unlearning, we will get N/3 instance per distribution (while keeping unlearning rate low).

 $p(\phi(\blacksquare)|Unlearned)$

 $p(\phi(\square)|Held-out)$

 $\phi(\square)$ $p(\phi(\square)|Unlearned)$

 $p(\phi(\blacksquare) | Out)$

✓ Valid in Game theoretical backbone

Unlearn (D_f)

 $\theta_T(z) = \theta_U$

Game 2: Targeted MIA for unlearning privacy

3. The *challenger* unlearns $D_f \cup \{D_{\text{train}} \cap D_{\text{target}}\}$ to get the model $\theta_{\mathcal{U}}$.

• If c = head, the challenger chooses a data point z from $D_f \cap D_{\text{target}}$

• If c = tail, the challenger chooses a data point z from

5. The *challenger* sends the selected data point *z* to the adversary.

if it is in D_{train} and guess $\hat{c} = \{\text{head, tail}\}; adversary wins if <math>\hat{c} = c$.

6. Given the unlearned model $\theta_{\mathcal{U}}$, the *adversary* queries z to determine

 θ_I (Original model)

4. The *challenger* flips a coin *c*:

 $\theta_{\mathcal{U}}$ (Target Unlearned model)

 θ_T (Test model)

a) Select target data

> **b)** Train shadow models; prepare distributions

c) Query: Unlearned model Privacy model -> Efficacy

2.Hypothetic Test

Game 3: MIA for unlearning efficacy

Efficacy

- 1. The *challenger* trains a model with $D_{\text{train}} \subseteq \mathcal{D}$ and gets θ_I . 1. The *challenger* trains a model with $D_{\text{train}} \subseteq \mathcal{D}$ and gets θ_I . 2. The adversary chooses a target set D_{target} and sends to challenger. 2. The adversary chooses a target set D_{target} and sends to challenger.
 - 3. The challenger unlearns $D_f \cup \{D_{\text{train}} \cap D_{\text{target}}\}$ to get the model $\theta_{\mathcal{U}}$. 4. The challenger flips a coin c:
 - If c = head, the challenger chooses a data point z from $D_f \cap D_{\text{target}}$ and the query result will be given as $f_{\theta_{q_i}}(\cdot)$
 - If c = tail, the challenger chooses a data point z from $D_{\text{target}} \setminus D_{\text{train}}$ and the query result will be given as $f_{\theta_I}(\cdot)$
 - 5. The *challenger* sends the selected data point *z* to the adversary. **6.** Given the query from queries z as $f_{\theta}(\cdot)$, the adversary determines if z is in D_f and guess $\hat{c} = \{\text{head, tail}\}; adversary wins if <math>\hat{c} = c$.

Revisited Game for PII

Revisited Game for PIII

Experiments

Baselines & Settings

- ☐ Targeting SOTA inexact unlearning's
- ☐ Choosing best unlearning parameters for any experiment
- ☐ Targeted population MIA baseline to show impact of PI

Different targets to show PII: Uniform random samples (most of existing works), Protected samples, Vulnerable samples only, Vulnerable + protected (Best), Random from one class [1]

a) Image classification. Unlearn images from trained/finetuned model. CIFAR-10&100/Tiny ImageNet

Target data	Targeted average-case attack (Population attack)				RULI			
	AUC	ACC	TPR@ 1%FPR	TPR@ 5%FPR	AUC	ACC	TPR@ 1% FPR	TPR@ 5%FPR
ℓ_1 Sparse								
Vulnerable only	54.4%	55.1%	2.3%	5.2%	59.6%	56.0%	2.4%	12.4%
Vulnerable as canaries	55.3%	54.7%	0.8%	5.6%	62.6%	57.0%	6.3%	16.6%
Random	53.2%	52.8%	0.0%	2.4%	56%	54.4%	0.8%	6.4%
Scrub								
Vulnerable only	52.5%	52.4%	2.0%	5.4%	65.3%	61.5%	11.7%	23.9%
Vulnerable as canaries	56.0%	56.2%	1.0%	6.3%	69.5%	63.6%	10.9%	27.1%
Random	49.6%	49.8%	1.0%	2.8%	59.7%	57.0%	6.0%	14.0%

unlearning < 1% of data from fine-tuned Swin-small model with Tiny ImageNet (left; privacy leakage, right; efficacy)

- Per-sample attacks work better (PI) Our canary injection settings shows

higher leakage (PII) Better MIA resilience does not

Vulnerable (Acc = 0.66, AUC = 0.71) Random (Acc = 0.67, AUC = 0.74) (a) ℓ_1 Sparse

Vulnerable+Protected (Acc = 0.71, AUC = 0.76)

Vulnerable (Acc = 0.72, AUC = 0.80)

Random (Acc = 0.77, AUC = 0.83)

(b) Scrub •5 % canaries: RULI still finds leaks—TPR@1 % = 8.7 %, Acc = 68.5 % (CIFAR-10). ·Mitigation: Sequentially unlearn samples with similar memorization.

b) Language models. Unlearn last 7-gram sequence from WikiText-103 Example: ...The Meridian Historic Districts and Landmarks Commission was created in 1979, and the Meridian Main Street program was founded in 1985.

· Limitation: not feasible to apply RULI to foundation models or model with large knowledge domain

[1] Hayes, Jamie, et al. "Inexact unlearning needs more careful evaluations to avoid a false sense of privacy." In SaTML 2025. 2 Cooper, A. Feder, et al. "Machine Unlearning Doesn't Do What You Think: Lessons for Generative Al Policy, Research, and Practice." In GenLaw 2024